Chemistry 202

 مقرر ك 2024ساعات معتمدة : r ساعات نــظري
ا ساعة عمـــلي

Chang $10^{\text {th }}$. edition
المراجع

* Thermochemistry
* Thermodynamics
* Solutions
* Chemical Kinetics

Nuclear chemistry

- Electrochemistry
*Colloidal and pollutions

الكيمياء الحرارية

الكيمياء الديناميكية الحرارية
كيمياء الحاليل
الكيمياء الـر كية
الكيمياء النووية
الكيمياء الكهر بائية
كيمياء الغرويات والتلوث الكيميائي
الفصل الأول

Thermochemistry

الكيمياء الحرارية

- Energy
* calorimeter
* Thermochemical equations

المعادلة الكيمائية الحرارية

* Heat and enthalpy change
* The law of Hess
الأنثنالبي
* Enthalpies of formation

إنثالبي التكوين

Thermochemistry

الكيمياء الحرارية

It is the study of heat released or absorbed by chemical or physical changes

$$
\begin{aligned}
& \text { هي الفرع من الكيمياء التى تُتم بدراسة الطاقة المصاحبه للتفاعل } \\
& \text { الكيمائى أو التغير الفيزيائي }
\end{aligned}
$$

The Nature of Energy

طبيعة الطاقة

Sugar You eat is combusted by your body to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. During this process energy is released chemical reactions involve change in energy

>Some reactions produce energy
$>$ Some reactions require energy

The study of energy and its transformations is known as Thermochemistry.

Energy measurement

قياس الطاقة

Force, F, is kind of push or pull on object
Gravity , a, is a force which keeps us stuck on the earth Work , w, is the force on object to move it, W = f x d

Energy : is the form of work, that mean to move an object.

Heat is an energy

Energy Units

$$
\begin{aligned}
\mathbf{W} & =F \times \mathbf{d}=\text { mass } \times \mathbf{a} \times \mathbf{d} \\
& =k g \times \mathbf{m} / \mathbf{s}^{2} \times \mathbf{m} \\
& =k g \mathbf{m}^{2} \mathbf{s}^{-2}=\text { Joule }
\end{aligned}
$$

Traditionally, energy changes accompanying chemical reactions have been expressed in calorie

Temperature and heat

درجة الحرارة والحرارة
>Celsius temperature scale : centigrade scale
>Fahrenheit temperature scale
$>$ Kelvin (k) temperature scale

$$
\text { tc }=5^{\circ} \mathrm{C} / 9^{\circ} \mathrm{F}\left(\mathrm{~T}_{\mathrm{f}}-32^{\circ} \mathrm{F}\right)
$$

Specific heat (sp . Heat)

```
الحرارة النوعية
```

It is the a mount of heat required to raise temperature of 1 gm of substance by $1^{\circ} \mathrm{C}$

It is the amount of heat to raise its temperature by $1^{\circ} \mathrm{C}$

$C=$ mass x sp.heat

$$
q=C\left(t_{2}-t_{1}\right)
$$

$>$ Temperature is the degree of hotness $>$ Heat is a form of energy

Calorimeter

```
المسعر الحراري
```

Calorimeter is a device to measure the heat changes that accompany chemical reactions .

Constant - pressure Calorimeter

This Calorimeter is measure the heat change (q) at constant pressure (q_{p})

The heat absorbed by an aqueous solvent is equal to the heat given off by the reaction of the solute

$$
\mathrm{q} \text { reaction }=\mathrm{q} \text { absorbed by solvent }
$$

Bomb calorimeter (constant - volume calorimeter)

This calorimeter is measure the heat change (q) at constant volume q_{v}.

In this case the calorimeter is sealed in insulated with no pressure regulation

Example

A bomb type calorimeter used to measure the heat evolved by the combustion of glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

A 3.0 g sample of glucose is placed in bombs which is then filled with oxygen gas under pressure. The bomb is placed in wall insulated colorimeter vessel that is filled with 1.20 kg of water the initial temperature of the assembly is $19.00^{\circ} \mathrm{C}$. The reaction mixture is ignited by the electrical heating of a wire within the bomb. The reaction causes the temperature of the calorimeter and its contents to increase to $25.50^{\circ} \mathrm{C}$. The heat capacity of the calorimeter is $2.21 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. How much heat is evolved by the combustion of 1 mol of glucose ?

Solution

To solve this problem we have to calculate
*The heat capacity of water, specific heat of water is $4.18 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$

The heat evolved from the combustion of 3.0 g of glucose

* Then the heat capacity evolved by 1 mol of glucose

$$
\begin{aligned}
\mathrm{C}_{\mathrm{H} 2 \mathrm{O}}= & \left(\text { mass of } \mathrm{H}_{2} \mathrm{O}\right) \text { sp. heat of } \mathrm{H}_{2} \mathrm{O} \\
& =(1200 \mathrm{~g})\left(4.18 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}\right) \\
& =5016 \mathrm{~J} /{ }^{\circ} \mathrm{C} \\
& =5.016 \mathrm{KJ} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

The heat capacity of calorimeter $=\mathrm{C}_{\mathrm{cal}}=2.2 \mathrm{KJ} /{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\text {Total }}=\mathrm{C}_{\mathrm{H} 2 \mathrm{O}}+\mathrm{C}_{\mathrm{cal}}=5.016+2.21$

$$
=7.226 \mathrm{KJ} /{ }^{\circ} \mathrm{C}
$$

$$
\mathrm{q}_{1}=\mathrm{C}_{\text {Total }} \times\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)
$$

$$
=7.226 \mathrm{~kg} /{ }^{\circ} \mathrm{C}\left(25.50^{\circ} \mathrm{C}-19.00^{\circ} \mathrm{C}\right)
$$

$$
=47.0 \mathrm{KJ}
$$

$$
\mathrm{q}_{2}=\frac{\mathrm{q}_{1} \times 180 \mathrm{~g}}{3 \mathrm{~g}}
$$

$$
=47 \mathrm{KJ} \times 180 \mathrm{~g}
$$

$$
3 \mathrm{~g}
$$

$=2.82 \times 10^{3} \mathrm{KJ}$ for one $\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Thermochimical equation

```
المعادلة الكيمياء الحرارية
```


We have two kind of reactions

>reactions done in closed calorimeter
$>$ reactions done at open calorimeter (open to atmosphere)

For the second reaction , the pressure is constant

For a reaction done at consent pressure the heat evolved or liberated are called enthalpy and given symbol H .

Any pure substance has an enthalpy

For a reaction, reactants \rightarrow products, the reactants has a definite H_{R} and the products has a definite H_{p}

The heat of reaction is given by

$$
\Delta \mathrm{H}=\mathrm{H}_{\mathrm{p}}-\mathrm{H}_{\mathrm{R}}
$$

From this equation it is clear that $\Delta \mathrm{H}$ may negative value or positive value

For-ve value of $\Delta \mathrm{H}$

$$
H_{p}<H_{R}
$$

The reaction liberate energy, that means gives heat so it called EXOTHERMIC Reaction

$$
\mathrm{H}_{\mathrm{p}}>\mathrm{H}_{\mathrm{R}}
$$

The reactants needs energy to converted to products

This type of reaction is a absorbed energy so it called ENDOTHERMIC Reaction

The enthalpies of chemical substance depend on temperature and Pressure

If reaction done at $25^{\circ} \mathrm{C}$ and 1atm. $\Delta \mathrm{H}$ is given ΔH° Known as standard Enthalpy

Thermochemical equation may be give by writing a chemical equation for a reaction and listing beside it $\Delta \mathrm{H}$ value for the reaction
$\Delta \mathrm{H}$ depends on the molar quantity (Extensive variable)
depends on the state of each substance, gas (g), liquid (I) , solid (s) and aqueous (aq).

Example:

$$
\begin{aligned}
& \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I}), \Delta \mathrm{H}=-286 \mathrm{KJ} \\
& \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \Delta \mathrm{H}=-242 \mathrm{KJ}
\end{aligned}
$$

When a reaction is Exothermic $\Delta \mathrm{H}$ is - ve
If a reaction reverse, it becomes Endothermic ΔH is +ve

Example:

$1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{I}_{2}(\mathrm{~s}) \rightarrow \mathrm{HI}(\mathrm{g}), \quad \Delta \mathrm{H}=25.9 \mathrm{KJ}$
$\mathrm{HI}(\mathrm{g}) \rightarrow 1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{I}_{2}(\mathrm{~s}), \quad \Delta \mathrm{H}=-25.9 \mathrm{KJ}$

Example:

The thermic reaction below is highly exothermic

$$
2 \mathrm{Al}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Fe}(\mathrm{~s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}), \Delta \mathrm{H}=-848 \mathrm{KJ}
$$

How much heat is liberated when 36.0 g of Al,reacts with excess $\mathrm{Fe}_{2} \mathrm{O}_{3}$?

Solution :

From the equation we have 2 mol of AI Liberated 848 kJ , since atomic mass of Al is $27 \mathrm{~g} / \mathrm{mol}$

The heat liberated when 36.0 g Al reacted is q

$$
q=\frac{36 \times(-848)}{2 \times 27}
$$

$$
=-565 \mathrm{KJ}
$$

The law of Hess

قانون هس

Is known as the law of constant heat summation

This law states, the change in enthalpy for any chemical reaction is constant, whether the reaction occurs in one step or in several steps

Consider the reaction :

$$
\mathrm{C} \text { (graphite) }+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \quad \Delta \mathrm{H}=-393.5 \mathrm{KJ}
$$

This reaction can occurs by tow steps:

$$
\mathrm{C}(\text { graphite })+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \varnothing(\mathrm{g}) \quad \Delta \mathrm{H}_{1}=-110.5 \mathrm{KJ}
$$

$$
\mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{2}=-283.0 \mathrm{KJ}
$$

$$
\mathrm{C}(\text { graphite })+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}=-393.5 \mathrm{KJ}
$$

Ways to calculate $\Delta \mathrm{H}$ Of reaction

i. From the law of Hess

Since thermochemical data can be treated algebraically and by using Hess law we can calculate ΔH for a reaction from other reactions with know ΔH

Example:

Given the following thermochemical equations

$4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}), \quad \Delta \mathrm{H}=-1531 \mathrm{~kJ}(1)$
$* \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}), \Delta \mathrm{H}=-367.4 \mathrm{~kJ}(2)$

$$
\begin{equation*}
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \quad \Delta \mathrm{H}=-285.9 \mathrm{~kJ} \tag{3}
\end{equation*}
$$

Find the value of $\Delta \mathrm{H}$ for the reaction

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Solution

Since we need $2 \mathrm{NH}_{3}(\mathrm{~g})$ on the left of the equation, equation (1) divided by (2)

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}), \Delta \mathrm{H}=-1531 \mathrm{KJ} / 2 \text {, (4) }
$$

Since we need in the equation $3 \mathrm{~N}_{2} \mathrm{O}$ on the left of the equation, equation (2) multiplied by (3)

$$
3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta \mathrm{H}=3(-367.4 \mathrm{KJ}),(5)
$$

To eliminate $3 \mathrm{H}_{2}(\mathrm{~g})$ from left we have to reverse eq(3) and multiplied by 3

$$
3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}), \quad \Delta \mathrm{H}=3(+285.9 \mathrm{KJ}), \quad(6)
$$

By summation of equations, (4), (5) and (6) we get

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~N}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-1010 \mathrm{KJ}
$$

ii. ΔH from the Enthalpy of formations

Standard state of substance is the state in which the substance is stable at 1 atm pressure and $25^{\circ} \mathrm{C}$

Standard Enthalpies

It Is the enthalpies change of a reaction involving the materials at their standard states, ΔH°

The enthalpy of formation : $\Delta \mathbf{H}^{\circ}{ }_{f}$

The enthalpy of formation of substance is the enthalpy for the formation of 1 mol of substance at its standard state from its elements at their standard stats

$$
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I}), \Delta \mathrm{H}=-286 \mathrm{KJ}
$$

$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta \mathrm{H}=-242 \mathrm{KJ}$

What is the deferent between the two equations?

Table 3.1 Enthalpies of formation at $25^{\circ} \mathrm{C}$ and $1 \mathbf{~ a t m}$

Compound $\quad \Delta H^{\circ}{ }_{f}(\mathrm{KJ} / \mathrm{mol})$ compound $\quad \Delta H^{\circ}{ }_{f}(\mathrm{KJ} / \mathrm{mol})$

$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8	$\mathrm{COCl}_{2}(\mathrm{~g})$	-223
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-285.9	$\mathrm{SO}_{2}(\mathrm{~g})$	-296.9
$\mathrm{HF}(\mathrm{g})$	-269	$\mathrm{CO}(\mathrm{g})$	-110.5
$\mathrm{HCl}(\mathrm{g})$	-92.30	$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5
$\mathrm{HBr}(\mathrm{g})$	-36.2	$\mathrm{NO}(\mathrm{g})$	+90.37
$\mathrm{HI}(\mathrm{g})$	+25.9	$\mathrm{NO}_{2}(\mathrm{~g})$	+33.8
$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	-20.2	$\mathrm{HNO}_{3}(\mathrm{l})$	-173.2
$\mathrm{HCN}(\mathrm{g})$	+130.5	$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$	-365.1
$\mathrm{NH}_{3}(\mathrm{~g})$	-46.19	$\mathrm{NaCl}(\mathrm{s})$	+9.25
$\mathrm{PH}_{3}(\mathrm{~g})$	-74.85	$\mathrm{MgO}(\mathrm{s})$	-411.0
$\mathrm{CH}_{4}(\mathrm{~g})$	-84.68	$\mathrm{CaO}(\mathrm{s})$	-601.83
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$	-635.5	
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	+52.30	CaCO	-986.59

Compound	$\Delta \mathbf{H}^{\circ}(\mathrm{KJ} / \mathrm{mol})$	compound	$\Delta \mathrm{H}^{\circ} \mathrm{f}$ ($\mathrm{KJ} / \mathrm{mol}$)
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	+226.7	$\mathrm{Ca}_{3} \mathrm{P}_{2}(\mathrm{~s})$	-504.17
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})$	+49.04	$\mathbf{B a O}(\mathrm{s})$	-588.1
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$	-201.2	$\mathrm{BaCO}_{3}(\mathrm{~s})$	-1218
$\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$	-238.5	$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-1669.8
$\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{~g})$	-28	$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-822.2
$\mathrm{NF}_{3}(\mathrm{~g})$	-113	AgC(s)	-127.0
$\mathrm{CF}_{4}(\mathrm{~g})$	-913.4	$\mathrm{HgBr}_{2}(\mathrm{~s})$	-169
$\mathrm{CHCl}_{3}(\mathbf{l})$	-132	ZnO(s)	-348.0

Standard enthalpy for any reaction can be calculated from the enthalpy of formation of products and reactants
$\Delta H^{\circ}=\Sigma \Delta H_{f}^{\circ} P-\Sigma \Delta H_{f}^{\circ} R$

Note: the enthalpy of formation of any element is zero at its standard state

Example

Use enthalpies of formation to calculate $\Delta \mathrm{H}^{\circ}$ for the reaction.

$$
\mathrm{Fe}_{2} \mathrm{O}_{2}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

Solution

From the table of $\Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}$ we get $\Delta \mathrm{H}_{\mathrm{f}}$ For the products and the reactants, then we apply equation(2)

$$
\begin{aligned}
& \Delta \mathrm{H}^{\circ}=3 \Delta \mathrm{H}_{\mathrm{f}} \mathrm{CO}_{2}(\mathrm{~g})-\left[\Delta \mathrm{H}_{\mathrm{f}}^{\circ} \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \Delta \mathrm{H}_{\mathrm{f}}^{\circ} \mathrm{CO}(\mathrm{~g})\right] \\
& =3(-393.5 \mathrm{KJ})-[-(822.2 \mathrm{KJ})+3(-110.5 \mathrm{KJ})] \\
& =-1180.5 \mathrm{KJ}+1153.7 \mathrm{KJ} \\
& =-26.8 \mathrm{KJ}
\end{aligned}
$$

iii. ΔH from Bond energies

Atoms are held together in molecules by chemical bonds. The energy required to break the bond that holds two atoms together in a diatomic molecules is called bond dissociation energy.

$$
\mathrm{H}-\mathrm{H}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{~g}), \quad \Delta \mathrm{H}=+435 \mathrm{KJ}
$$

$$
\mathrm{Cl}-\mathrm{Cl}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{~g}), \Delta \mathrm{H}=+243 \mathrm{KJ}
$$

$$
\mathrm{H}-\mathrm{Cl}(\mathrm{~g}) \rightarrow \mathrm{H}(\mathrm{~g})+\mathrm{Cl}(\mathrm{~g}), \Delta \mathrm{H}=+431 \mathrm{KJ}
$$

Bond dissociation energy is always + ve value (Endothermic)

* The reverse of bond dissociation energy is -ve (because it forms bonds)
$\mathrm{H}(\mathrm{g})+\mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{HCl}(\mathrm{g}), \quad \Delta \mathrm{H}=-431 \mathrm{KJ}$
$\Delta \mathrm{H}$ for any reaction can be calculated from bond energies dissociation of reactant and product

Since the reaction is the breaking of bonds for reactants and forms bonds for products
$\Delta H_{\text {reaction }}=\Sigma$ bond energies of reactants $-\Sigma$ bond energies of products

Polyatomic molecules

$$
\underset{\substack{\mathrm{H}-\mathrm{O}(\mathrm{~g}) \\ \mathrm{H}}}{\mathrm{H}} \rightarrow \mathrm{H}-\mathrm{O}(\mathrm{~g})+\mathrm{H}(\mathrm{~g}), \Delta \mathrm{H}=501 \mathrm{KJ}
$$

$$
\mathrm{H}-\mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{H}(\mathrm{~g})+\mathrm{O}, \Delta \mathrm{H}=425 \mathrm{KJ}
$$

$H-O=463 \mathrm{KJ}$ (average bond energy)

Average Bond energies

Bond	Average Bond Energy (KJ/mol)	Bond	Average Bond Energy(KJ/mol)
H-H	435	P-H	318
H-F	565	$\mathrm{N}-\mathrm{Cl}$	201
H-Cl	431	P-CL	326
$\mathrm{H}-\mathrm{Br}$	364	C-C	347
H-I	297	$\mathrm{C}=\mathrm{C}$	619
F-F	155	$\mathrm{C} \equiv \mathrm{C}$	812
$\mathrm{Cl}-\mathrm{Cl}$	243	C-H	414
Br-Br	193	C-O	335
1-I	151	$\mathrm{C}=0$	707
O-O	138	C-F	485
$\mathrm{O}_{2}{ }^{\text {b }}$	494	C-Cl	326
O-H	463	C-N	293
O-F	183	$\mathrm{C}=\mathrm{N}$	616
O-Cl	205	$\mathbf{C} \equiv \mathrm{N}$	879
N-N	159	S-H	339
$\mathrm{N}=\mathrm{N}$	418	S-S	213
$\mathrm{N}=\mathrm{N}$	914	S-Cl	276
N-H	389		

Example

Use the average board energies to calculate the value of for the reaction

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}-\mathrm{Cl}(\mathrm{~g}) \rightarrow \mathrm{N} \equiv \mathrm{~N}(\mathrm{~g})+6 \mathrm{H}-\mathrm{Cl}(\mathrm{~g})
$$

Solution

from the Reaction equation : we have
In the reactants
6 bonds of $\mathrm{N}-\mathrm{H}$
3 bonds of $\mathrm{cl}-\mathrm{cl}$

in Product

One bond of $\mathrm{N} \equiv \mathrm{N}$

6 bond of $\mathrm{H}-\mathrm{Cl}$

$$
\begin{aligned}
& \Delta \mathrm{H}=6(\mathrm{~N}-\mathrm{H})+3(\mathrm{Cl}-\mathrm{Cl})-[\mathrm{N} \equiv \mathrm{~N}+6(\mathrm{H}-\mathrm{Cl})] \\
& =6(389)+3(243)-[941+6(431)] \\
& =2334+729-(3527) \\
& =-464 \mathrm{KJ}
\end{aligned}
$$

